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Abstract—We develop elements of a theory of cooperation and
coordination in networks. Rather than considering a communi-
cation network as a means of distributing information, or of re-
constructing random processes at remote nodes, we ask what de-
pendence can be established among the nodes given the commu-
nication constraints. Specifically, in a network with communica-
tion rates ������ between the nodes, we ask what is the set of all
achievable joint distributions ����� � � � � ��� of actions at the nodes
of the network. Several networks are solved, including arbitrarily
large cascade networks. Distributed cooperation can be the solu-
tion to many problems such as distributed games, distributed con-
trol, and establishing mutual information bounds on the influence
of one part of a physical system on another.

Index Terms—Common randomness, cooperation capacity, co-
ordination capacity, network dependence, rate distortion, source
coding, strong Markov lemma, task assignment, Wyner common
information.

I. INTRODUCTION

C OMMUNICATION is required to establish cooperative
behavior. In a network of nodes where relevant informa-

tion is known at only some nodes in the network, finding the
minimum communication requirements to coordinate actions
can be posed as a network source coding problem. This diverges
from traditional source coding. Rather than focus on sending
data from one point to another with a fidelity constraint, we con-
sider the communication needed to establish coordination sum-
marized by a joint probability distribution of behavior among
all nodes in the network.

A large variety of research addresses the challenge of col-
lecting or moving information in networks. Network coding
[1] seeks to efficiently move independent flows of information
over shared communication links. On the other hand, distributed
average consensus [2] involves collecting related information.
Sensors in a network collectively compute the average of their
measurements in a distributed fashion. The network topology
and dynamics determine how many rounds of communication
among neighbors are needed to converge to the average and how
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Fig. 1. Coordination capacity. This network represents the general framework
we consider. The nodes in this network have rate-limited links of communi-
cation between them. Each node performs an action. The actions � , � ,
and � in the source set � are chosen randomly by nature according to
� �� � � � � �, while the actions � , � , and � are produced based on
the communication and common randomness in the network. What joint
distributions � �� � � � � ���� � � � � �� � � � � � can be achieved?

good the estimate will be at each node [3]. Similarly, in the gos-
siping Dons problem [4], each node starts with a unique piece of
gossip, and one wishes to know how many exchanges of gossip
are required to make everything known to everyone. Computing
functions in a network is considered in [5], [6], and [7].

Our work, introduced in [8], has several distinctions from
the network communication examples mentioned. First, we
keep the purpose for communication very general, which
means sometimes we get away with saying very little about
the information in the network while still achieving the desired
coordination. We are concerned with the joint distribution of
actions taken at the various nodes in the network, and the
“information” that enters the network is nothing more than
actions that are selected randomly by nature and assigned to
certain nodes. Secondly, we consider quantization and rates of
communication in the network, as opposed to only counting the
number of exchanges. We find that we can gain efficiency by
using vector quantization specifically tailored to the network
topology.

Fig. 1 shows an example of a network with rate-limited
communication links. In general, each node in the network
performs an action where some of these actions are selected
randomly by nature. In this example, the source set indicates
which actions are chosen by nature: Actions , , and

are assigned randomly according to the joint distribution
. Then, using the communication and common

randomness that is available to all nodes, the actions , ,
and outside of are produced. We ask, which conditional
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distributions are compatible with the
network constraints.

A variety of applications are encompassed in this framework.
This could be used to model sensors in a sensor network,
sharing information in the standard sense, while also cooper-
ating in their transmission of data. Similarly, a wireless ad hoc
network can improve performance by cooperating among nodes
to allow beam-forming and interference alignment. On the other
hand, some settings do not involve moving information in the
usual sense. The nodes in the network might comprise a dis-
tributed control system, where the behavior at each node must
be related to the behavior at other nodes and the information
coming into the system. Also, with computing technology
continuing to move in the direction of parallel processing, even
across large networks, a network of computers must coherently
perform computations while distributing the work load across
the participating machines. Alternatively, the nodes might each
be agents taking actions in a multiplayer game.

Network communication can be revisited from the viewpoint
of coordinated actions. Rate distortion theory becomes a spe-
cial case. More generally, we ask how we can build dependence
among the nodes. What is it good for? How do we use it?

In this paper, we deal with two fundamentally different
notions of coordination which we distinguish as empirical
coordination and strong coordination, both associated with a
desired joint distribution of actions. Empirical coordination is
achieved if the joint type of the actions in the network—the
empirical joint distribution—is close to the desired distribution.
Techniques from rate-distortion theory are relevant here. Strong
coordination instead deals with the joint probability distribu-
tion of the actions. If the actions in the network are generated
randomly so that a statistician cannot reliably distinguish (as
measured by total variation) between the constructed -length
sequence of actions and random samples from the desired
distribution, then strong coordination is achieved. The ap-
proach and proofs in this framework are related to the common
information work by Wyner [9].

Before developing the mathematical formulation, consider
the first surprising observation.

A. No Communication

Suppose we have three nodes choosing actions and no com-
munication is allowed between the nodes (Fig. 2). We assume
that common randomness is available to all the nodes. What is
the set of joint distributions that can be achieved at
these isolated nodes? The answer turns out to be any joint dis-
tribution whatsoever. The nodes can agree ahead of time on how
they will behave in the presence of common randomness (for ex-
ample, a time stamp used as a seed for a random number gener-
ator). Any triple of random variables can be created as functions
of common randomness.

This would seem to be the end of the problem, but the problem
changes dramatically when one of the nodes is specified by na-
ture to take on a certain value, as will be the case in each of the
scenarios following.

An eclectic collection of work, ranging from game theory to
quantum information theory, has a number of close relation-

Fig. 2. No communication. Any distribution ���� �� �� can be achieved without
communication between nodes. Define three random variables ����, � ���, and
���� with the appropriate joint distribution, on the standard probability space
�������, and let the actions at the nodes be ��	�, � �	�, and ��	�, where
	 � � is the common randomness.

ships to our approach and results. For example, Anantharam and
Borkar [10] let two agents generate actions for a multiplayer
game based on correlated observations and common random-
ness and ask what kind of correlated actions are achievable.
From a quantum mechanics perspective, Barnum et al. [11]
consider quantum coding of mixed quantum states. Kramer
and Savari [12] look at communication for the purpose of
“communicating probability distributions” in the sense that
they care about reconstructing a sequence with the proper
empirical distribution of the sources rather than the sources
themselves. Weissman and Ordentlich [13] make statements
about the empirical distributions of sub-blocks of source and
reconstruction symbols in a rate-constrained setting. And Han
and Verdú [14] consider generating a random process via use
of a memoryless channel, while Bennett et al. [15] propose a
“reverse Shannon theorem” stating the amount of noise free
communication necessary to synthesize a memoryless channel.

In this paper, we consider coordination of actions in two and
three node networks. These serve as building blocks for under-
standing larger networks. Some of the actions at the nodes are
given by nature, and some are constructed by the node itself.
We describe the problem precisely in Section II. For some net-
work settings we characterize the entire solution, but for others
we give partial results including bounds and solutions to spe-
cial cases. The complete results are presented in Section III and
include a variant of the multiterminal source coding problem.
Among the partial results of Section IV, a consistent trend in
coordination strategies is identified, and the golden ratio makes
a surprise appearance.

In Section V, we consider strong coordination. We charac-
terize the communication requirements in a couple of settings
and discuss the role of common randomness. If common ran-
domness is available to all nodes in the network then empirical
coordination and strong coordination seem to require equiva-
lent communication resources, consistent with the implications
of the “reverse Shannon theorem” [15]. Furthermore, we can
quantify the amount of common randomness needed, treating
common randomness itself as a scarce resource.

Rate-distortion regions are shown to be projections of the
coordination capacity region in Section VI. The proofs for all
theorems are presented together in Section VII, where we in-
troduce a stronger Markov Lemma (Theorem 12) that may be
broadly useful in network information theory. In our closing re-
marks we show cases where this work can be extrapolated to
large networks to identify the efficiency of different network
topologies.
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Fig. 3. Cascade network. Node � is assigned actions � chosen by nature according to ��� � � � �� �. A message � in the set ��� � � � � � � is con-
structed based on� and the common randomness� and sent to Node�, which constructs both an action sequence � and a message � in the set ��� � � � � � �.
Finally, Node 	 produces actions 	 based on the message � and the common randomness �. This is summarized in Fig. 4.

II. EMPIRICAL COORDINATION

In this section and the next, we address questions of the fol-
lowing nature: If three different tasks are to be performed in a
shared effort between three people, but one person is randomly
assigned his responsibility, how much must he tell the others
about his assignment in order to divide the labor?

A. Problem Specifics

The definitions in this section pinpoint the concept of empir-
ical coordination. We will consider coordination in a variety of
two and three node networks. The basic meaning of empirical
coordination is the same for each network—we use the network
communication to construct a sequence of actions that have an
empirical joint distribution closely matching a desired distribu-
tion. What’s different from one problem to the next is the set
of nodes whose actions are selected randomly by nature and the
communication limitations imposed by the network topology.

Here we define the problem in the context of the cascade net-
work of Section III-C shown in Fig. 3. These definitions have
obvious generalizations to other networks.

In the cascade network of Fig. 3, node has a sequence of
actions specified randomly by nature. Note that a
node is allowed to see all of its actions before it summarizes
them for the next node. Communication is used to give Node
and Node enough information to choose sequences of actions
that are empirically correlated with according to a
desired joint distribution . The communication
travels in a cascade, first from Node to Node at rate
bits per action, and then from Node to Node at rate bits
per action.

Specifically, a coordination code is used as a
protocol to coordinate the actions in the network for a block of
time periods. The coordination code and the distribution of the
random actions induce a joint distribution on the actions in
the network. If the joint type of the actions in the network can be
made arbitrarily close to a desired distribution
with high probability, as dictated by the distribution induced
by a coordination code, then
is achievable with the rate pair .

Definition 1 (Coordination Code): A coor-
dination code for the cascade network of Fig. 3 consists of four
functions—an encoding function

a recoding function

and two decoding functions

Definition 2 (Induced Distribution): The induced distribution
is the resulting joint distribution of the actions in

the network , , and when a coordina-
tion code is used.

Specifically, the actions are chosen by nature i.i.d. ac-
cording to and independent of the common randomness

. Thus, and are jointly distributed according to a product
distribution

The actions and are functions of and given by
implementing the coordination code as

Definition 3 (Joint Type): The joint type of a tuple
of sequences is the empirical probability mass
function, given by

for all , where is the indicator function.

Definition 4 (Total Variation): The total variation between
two probability mass functions is half the distance between
them, given by

Definition 5 (Achievability): A desired distribution
is achievable for empirical coordination with the

rate pair if there exists a sequence of
coordination codes and a choice of such that the total
variation between the joint type of the actions in the network
and the desired distribution goes to zero in probability (under
the induced distribution). That is



4184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010

We now define the region of all rate-distribution pairs in Def-
inition 6 and slice it into rates for a given distribution in Defini-
tion 7 and distributions for a given set of rates in Definition 8.

Definition 6 (Coordination Capacity Region): The coordina-
tion capacity region for the source distribution is the
closure of the set of rate-coordination tuples
that are achievable

Definition 7 (Rate-Coordination Region): The rate-coordina-
tion region is a slice of the coordination capacity region
corresponding to a fixed distribution

Definition 8 (Coordination-Rate Region): The coordination-
rate region is a slice of the coordination capacity region
corresponding to a tuple of rates

B. Preliminary Observations

Lemma 1 (Convexity of Coordination): , , and are
all convex sets.

Proof: The coordination capacity region is convex be-
cause time-sharing can be used to achieve any point on the chord
between two achievable rate-coordination pairs. Simply com-
bine two sequences of coordination codes that achieve the two
points in the coordination capacity region by using one code
and then the other in a proportionate manner to achieve any
point on the chord. The definition of joint type in Definition 3
involves an average over time. Thus, if one sequence is con-
catenated with another sequence, the resulting joint type is a
weighted average of the joint types of the two composing se-
quences. Rates of communication also combine according to the
same weighted average. The rate of the resulting concatenated
code is the weighted average of the two rates.

The rate-coordination region is the intersection of the
coordination capacity region with a hyperplane, which are
both convex sets. Likewise for the coordination-rate region .
Therefore, and are both convex.

Common randomness used in conjunction with randomized
encoders and decoders can be a crucial ingredient for some com-
munication settings, such as secure communication. We see, for
example, in Section V that common randomness is a valuable re-
source for achieving strong coordination. However, it does not
play a necessary role in achieving empirical coordination, as the
following theorem shows.

Theorem 2 (Common Randomness Does Not Help): Any de-
sired distribution that is achievable for empirical
coordination with the rate pair can be achieved with

.

Fig. 4. Shorthand notation for the cascade network of Fig. 3.

Proof: Suppose that is achievable for em-
pirical coordination with the rate pair . Then there ex-
ists a sequence of coordination codes for which
the expected total variation between the joint type and
goes to zero with respect to the induced distribution. This fol-
lows from the bounded convergence theorem since total varia-
tion is bounded by one. By iterated expectation

Therefore, there exists a value such that

Define a new coordination code that does not depend on and
at the same time does not increase the expected total variation

This can be done for each coordination code
for .

C. Generalization

We investigate empirical coordination in a variety of net-
works in Sections III and IV. In each case, we explicitly specify
the structure and implementation of the coordination codes, sim-
ilar to Definitions 1 and 2, while all other definitions carry over
in a straightforward manner.

We use a shorthand notation in order to illustrate each net-
work setting with a simple and consistent figure. Fig. 4 shows
the shorthand notation for the cascade network of Fig. 3. The
random actions that are specified by nature are shown with ar-
rows pointing down toward the node (represented by a block).
Actions constructed by the nodes themselves are shown coming
out of the node with an arrow downward. And arrows indicating
communication from one node to another are labeled with the
rate limits for the communication along those links.

III. COORDINATION—COMPLETE RESULTS

In this section we present the coordination capacity regions
for empirical coordination in four network settings: a

network of two nodes; a cascade network; an isolated node
network; and a degraded source network. Proofs are left to
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Fig. 5. Two nodes. The action � is chosen by nature according to � ���. A
message is sent to node � at rate �. The coordination capacity region � is
the set of rate-coordination pairs where the rate is greater than the mutual infor-
mation between � and � .

Section VII. As a consequence of Theorem 2 we need not
use common randomness. Common randomness will only be
required when we try to generate desired distributions over
entire n-blocks in Section V.

A. Two Nodes

In the simplest network setting shown in Fig. 5, we consider
two nodes, and . The action is specified by nature ac-
cording to , and a message is sent at rate to node .

The coordination codes consist of an encoding func-
tion

and a decoding function

The actions are chosen by nature i.i.d. according to ,
and the actions are functions of given by implementing
the coordination code as

Theorem 3 (Coordination Capacity Region): The coordina-
tion capacity region for empirical coordination in the two-
node network of Fig. 5 is the set of rate-coordination pairs where
the rate is greater than the mutual information between and

. Thus

Discussion: The coordination capacity region in this setting
yields the rate-distortion result of Shannon [16]. Notice that with
no communication ( ), only independent distributions

are achievable, in contrast to the setting of Fig. 2,
where none of the actions were specified by nature and all joint
distributions were achievable.

Example 1 (Task Assignment): Suppose there are tasks
numbered 1 through . One task is dealt randomly to node ,
and node needs to choose one of the remaining tasks. This
coordinated behavior can be summarized by a distribution .
The action is given by nature according to , the uni-
form distribution on the set . The desired conditional
distribution of the action is , the uniform distribution

Fig. 6. Task assignment in the two-node network: A task from a set of tasks
numbered �� � � � � � is to be assigned uniquely to each of the nodes � and � in
the two-node network setting. The task assignment for � is given randomly by
nature. The communication rate � � ��	����� �� is necessary and sufficient
to allow � to select a different task from �.

Fig. 7. Isolated node. The action � is chosen by nature according to � ���,
and a message is sent at rate � from node � to node �. Node 
 receives no
communication. The coordination capacity region � is the set of rate-coordi-
nation pairs where ���� 	� 
� � � �����
���	��� 
� and the rate � is greater
than the conditional mutual information between � and � given � .

on the set of tasks different from . Therefore, the joint distribu-
tion is the uniform distribution on pairs of differing
tasks from the set . Fig. 6 illustrates a valid outcome
for larger than 5.

By applying Theorem 3, we find that the rate-coordination
region is given by

B. Isolated Node

Now we derive the coordination capacity region for the iso-
lated-node network of Fig. 7. Node has an action chosen by
nature according to , and a message is sent at rate from
node to node from which node produces an action. Node

also produces an action but receives no communication. What
is the set of all achievable coordination distributions ?
At first it seems that the action at the isolated node must be
independent of , but we will see otherwise.

We formalize this problem as follows. The coordi-
nation codes consist of an encoding function

a decoding function

and a deterministic sequence
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The actions are chosen by nature i.i.d. according to ,
and the actions are functions of given by implementing
the coordination code as

The coordination capacity region for this network is given in
the following theorem. As we previously alluded, notice that the
action need not be independent of , even though there is no
communication to node .

Theorem 4 (Coordination Capacity Region): The coordina-
tion capacity region for empirical coordination in the iso-
lated-node network of Fig. 7 is the set of rate-coordination pairs
where is independent of and the rate is greater than
the conditional mutual information between and given .
Thus

Discussion: How can and have a dependence when there
is no communication between them? This dependence is pos-
sible because neither nor is chosen randomly by nature. In
an extreme case, we could let node ignore the incoming mes-
sage from node and let the actions at node and node be
equal, . Thus, we can immediately see that with no com-
munication the coordination region consists of all distributions
of the form .

If we were to use common randomness to generate the ac-
tion sequence , then Node , which also has access to
the common randomness, can use it to produce correlated ac-
tions. This does not increase the coordination capacity region
(see Theorem 2), but it provides an intuitive understanding of
how and can be correlated. Without explicit use of common
randomness, we select a determinist sequence before-hand as
part of our codebook and make it known to all parties.

It is interesting to note that there is a tension between the cor-
relation of and and the correlation of and . For in-
stance, if the communication is used to make perfect correlation
between and then any potential correlation between and

is forfeited.
Within the results for the more general cascade network in

the sequel (Section III-C) we will find that Theorem 4 is an
immediate consequence of Theorem 5 by letting .

Example 2 (Jointly Gaussian): Jointly Gaussian distributions
illustrate the tradeoff between the correlation of and and
the correlation of and in the isolated-node network. Con-
sider the portion of the coordination-rate region that
consists of jointly Gaussian distributions. If is distributed ac-
cording to , what set of covariance matrices can be
achieved at rate ?

So far we have discussed coordination for distribution func-
tions with finite alphabets. Extending to infinite alphabet distri-
butions, achievability means that any finite quantization of the
joint distribution is achievable.

Fig. 8. Cascade. The action� is chosen by nature according to � ���. A mes-
sage is sent from node � to node � at rate � . Node � produces an action �
and a message to send to node � based on the message received from node �.
Node � then produces an action � based on the message received from node
�. The coordination capacity region � is the set of rate-coordination triples
where the rate� is greater than the mutual information between� and �����,
and the rate � is greater than the mutual information between � and � .

Using Theorem 4, we bound the correlations as follows:

(1)

where and are correlation coefficients. Equality (a)
holds because due to the independence between
and . Obtain equality (b) by dividing the numerator and
denominator of the argument of the by .

Unfolding (1) yields a linear tradeoff between the and
, given by

Thus, all correlation coefficients and satisfying this con-
straint are achievable at rate .

C. Cascade

We now give the coordination capacity region for the cascade
of communication in Fig. 8. In this setting, the action at node
is chosen by nature. A message at rate is sent from node
to node , and subsequently a message at rate is sent from
node to node based on the message received from node

. Nodes and produce actions based on the messages they
receive.

The formal statement is as follows. The coor-
dination codes consist of four functions—an encoding function

a recoding function
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Fig. 9. Task assignment in the cascade network: Three tasks, numbered 1, 2,
and 3, are distributed among three nodes �, �, and � in the cascade network
setting. The task assignment for � is given randomly by nature. The rates� �
��� � and� � ��� �� ��� � are required to allow � and � to choose different
tasks from � and from each other.

and two decoding functions

The actions are chosen by nature i.i.d. according to ,
and the actions and are functions of given by imple-
menting the coordination code as

This network was considered by Yamamoto [17] in the
context of rate-distortion theory. The same optimal encoding
scheme from his work achieves the coordination capacity
region as well.

Theorem 5 (Coordination Capacity Region): The coordina-
tion capacity region for empirical coordination in the cas-
cade network of Fig. 8 is the set of rate-coordination triples
where the rate is greater than the mutual information be-
tween and , and the rate is greater than the mutual
information between and . Thus

Discussion: The coordination capacity region meets the
cut-set bound. The trick to achieving this bound is to first specify

and then specify conditioned on .

Example 3 (Task Assignment): Consider a task assignment
setting where three tasks are to be assigned without duplication
to the three nodes , , and , and the assignment for node

is chosen uniformly at random by nature. A distribution cap-
turing this coordination behavior is the uniform distribution over
the six permutations of task assignments. Let be the uni-
form distribution on the set {1, 2, 3}, and let give equal
probability to both of the assignments to and that produce
different tasks at the three nodes. Fig. 9 illustrates a valid out-
come of the task assignments.

According to Theorem 5, the rate-coordination region
is given by

Fig. 10. Degraded source: The action � is specified by nature according to
� 	�
, and the action � is a function � of � . A message is sent from node �
to node � at rate � , after which node � constructs a message for node � at
rate� based on the incoming message from node � and the action � . Node �
also sends a message directly to node � at rate � . The coordination capacity
region � is given in Theorem 6.

D. Degraded Source

Here we present the coordination capacity region for the
degraded-source network shown in Fig. 10. Nodes and
each have an action specified by nature, and is a function of

. That is, , where is the
indicator function. Node sends a message to node at rate

and a message to node at rate . Node , upon receiving
the message from node , sends a message at rate to node .
Node produces an action based on the two messages it receives.

The coordination codes for Fig. 10
consist of four functions—two encoding functions

a recoding function

and a decoding function

The actions and are chosen by nature i.i.d. according
to , having the property that for all , and
the actions are a function of and given by imple-
menting the coordination code as

Others have investigated source coding networks in the rate-
distortion context where two sources are encoded at separate
nodes to be reconstructed at a third node. Kaspi and Berger [18]
consider a variety of cases where the encoders share some infor-
mation. Also, Barros and Servetto [19] articulate the compress
and bin strategy for more general bi-directional exchanges of
information among the encoders. While falling under the same
general compression strategy, the degraded source network is
a special case where optimality can be established, yielding a
characterization of the coordination capacity region.
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Fig. 11. Broadcast. The action � is chosen by nature according to � ���. A
message is sent from node � to node � at rate � , and a separate message is
sent from node � to node � at rate � . Nodes � and � produce actions based
on the messages they receive. Bounds on the coordination capacity region �
are given in Theorem 7.

Theorem 6 (Coordination Capacity Region): The coordina-
tion capacity region for empirical coordination in the de-
graded-source network of Fig. 10 is given by

such that

IV. COORDINATION—PARTIAL RESULTS

We have given the coordination capacity region for several
multinode networks. Those results are complete. We now in-
vestigate networks for which we have only partial results.

In this section we present bounds on the coordination ca-
pacity regions for empirical coordination in two network
settings of three nodes—the broadcast network and the cas-
cade-multiterminal network. A communication technique that
we find useful in both settings, also used in the degraded-source
network of Section III, is to use a portion of the communica-
tion to send identical messages to all nodes in the network. The
common message serves to correlate the codebooks used on dif-
ferent communication links and can result in reduced rates in the
network.

Proofs are left to Section VII. Again, as a consequence of
Theorem 2 we need not use common randomness in this section.

A. Broadcast

We now give bounds on the coordination capacity region for
the broadcast network of Fig. 11. In this setting, node has
an action specified by nature according to and sends one
message to node at rate and a separate message to node
at rate . Nodes and each produce an action based on the
message they receive.

Node serves as the controller for the network. Nature as-
signs an action to node , which then tells node and node
which actions to take.

The coordination codes consist of two en-
coding functions

and two decoding functions

The actions are chosen by nature i.i.d. according to ,
and the actions and are functions of given by imple-
menting the coordination code as

From a rate-distortion point of view, the broadcast network is
not a likely candidate for consideration. The problem separates
into two noninterfering rate-distortion problems, and the rela-
tionship between the sequences and is ignored (unless
the decoders communicate as in [20]). However, a related sce-
nario, the problem of multiple descriptions [21], where the com-
bination of two messages and are used to make a third esti-
mate of the source , demands consideration of the relationship
between the two messages. In fact, the communication scheme
for the multiple descriptions problem presented by Zhang and
Berger [22] coincides with our inner bound for the coordination
capacity region in the broadcast network.

The set of rate-coordination tuples is an inner bound
on the coordination capacity region, given by

such that

The set of rate-coordination tuples is an outer bound on
the coordination capacity region, given by

Also, define and to be the
sets of rate pairs in and corresponding to the de-
sired distribution .

Theorem 7 (Coordination Capacity Region Bounds): The co-
ordination capacity region for empirical coordination in the
broadcast network of Fig. 11 is bounded by

Discussion: The regions and are convex. A
time-sharing random variable can be lumped into the auxiliary
random variable in the definition of to show convexity.
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TABLE I
KNOWN CAPACITY REGION (CASES WHERE � � � )

The inner bound is achieved by first sending a common
message, represented by , to both receivers and then private
messages to each. The common message effectively correlates
the two codebooks to reduce the required rates for specifying
the actions and . The sum rate takes a penalty of

in order to assure that and are coordinated
with each other as well as with .

The outer bound is a consequence of applying the two-
node result of Theorem 3 in three different ways, once for each
receiver, and once for the pair of receivers with full cooperation.

For many distributions, the bounds in Theorem 7 are tight and
the rate-coordination region . This is
true for all distributions where , , and form a Markov
chain in any order. It is also true for distributions where and

are independent or where is independent pairwise with
both and . For each of these cases, Table I shows the choice
of auxiliary random variable in the definition of that
yields . In case 5, the region is opti-
mized by time-sharing between and .

Notice that if in the broadcast network we find
ourselves in the isolated node setting of Section III-B. Con-
sider a particular distribution that could
be achieved in the isolated node network. In the setting of the
broadcast network, it might seem that the message from node

to node is useless for achieving , since
and are independent. However, this is not the case. For

some desired distributions , a positive rate
in the broadcast network actually helps reduce the required

rate .
To highlight a specific case where a message to node is

useful even though is independent of in the desired dis-
tribution, consider the following. Let be the
uniform distribution over all combinations of binary , , and
with even parity. The variables , , and are each Bernoulli-
half and pairwise independent, and , where is
addition modulo two. This distribution satisfies both case 4 and
case 5 from Table I, so we know that . Therefore,
the rate-coordination region is characterized by
a single inequality

The minimum rate needed when no message is sent from
node to node is 1 bit, while the required rate in general is

bits.
The following task assignment problem has practical impor-

tance.

Example 4 (Task Assignment): Consider a task assignment
setting similar to Example 3, where three tasks are to be assigned

Fig. 12. Task assignment in the broadcast network: Three tasks, numbered 0, 1,
and 2, are distributed among three nodes �, �, and � in the broadcast network
setting. The task assignment for � is given randomly by nature. What rates �
and � are necessary to allow � and � to choose different tasks from � and
each other?.

Fig. 13. Rate region bounds for task assignment: Points �, �, � , and � are
achievable rates for the task assignment problem in the broadcast network. The
solid line indicates the outer bound � ������ 	�
��, and the dashed line
indicates a subset of the inner bound � ������ 	�
��. Points � and � are
achieved by letting � � �. Point � uses � as time-sharing, independent of � .
Point � uses � to describe � partially to each of the nodes � and �.

without duplication to the three nodes , , and , and the as-
signment for node is chosen uniformly at random by nature.
A distribution capturing this coordination behavior is the uni-
form distribution over the six permutations of task assignments.
Let be the uniform distribution on the set {0, 1, 2}, and
let give equal probability to both of the assignments to

and that produce different tasks at the three nodes. Fig. 12
illustrates a valid outcome of the task assignments.

We can explore the achievable rate region by
using the bounds in Theorem 7. In this process, we find rates as
low as to be sufficient on each link, where

is the golden ratio.
First consider the points in the inner bound

that are achieved without the use of the auxiliary variable .
This consists of a pentagonal region of rate pairs. The extreme
point , shown in Fig. 13, corresponds to
the a simple communication approach. First node coordinates
with node . Theorem 3 for the two-node network declares the
minimum rate needed to be . After action has
been established, node specifies action in it’s entire detail
using the rate . A complementary scheme achieves
the extreme point in Fig. 13. The sum rate achieved by these
points is bits.

We can explore more of the inner bound
by adding the element of time-sharing. That is, use an auxiliary
variable that is independent of . As long as we can assign
tasks in the network so that , , and are each unique, then
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there will be a method of using time-sharing that will achieve
the desired uniform distribution over unique task assignments .
For example, devise six task assignment schemes from the one
successful scheme by mapping the tasks onto the six different
permutations of . By time-sharing equally among these
six schemes, we achieve the desired distribution.

With the idea of time-sharing in mind, we achieve a better
sum rate by restricting the domain of to {0, 1} and to {0,
2} and letting them be functions of in the following way:

(2)

.
(3)

We can say that takes on a default value of 1, and takes on
a default value of 2. Node just tells nodes and when they
need to get out of the way, in which case they switch to task 0.
To achieve this we only need bits
and bits, represented by point
in Fig. 13.

Finally, we achieve an even smaller sum rate in the inner
bound by using a more interesting choice of

in addition to time-sharing.1 Let be correlated
with in such a way that they are equal more often than one
third of the time. Now restrict the domains of and based
on . The actions and are functions of and defined
as follows:

(4)

.
(5)

This corresponds to sending a compressed description of ,
represented by , and then assigning default values to and

centered around . The actions and sit on both sides of
and only move when tells them to get out of the way. The

description rates needed for this method are

(6)

Using a symmetric conditional distribution from to , cal-
culus provides the following parameters:

(7)

(8)

where is the golden ratio. This level of compression
results in a very low rate of description, bits,
for sending to each of the nodes and .

1Time-sharing is also lumped into � , but we ignore that here to simplify the
explanation.

Fig. 14. Cascade multiterminal. The actions � and � are chosen by nature
according to � ��� ��. A message is sent from node � to node � at rate � .
Node � then constructs a message for node � based on the received message
from node � and its own action. Node � produces an action based on the mes-
sage it receives from node �. Bounds on the coordination capacity region �

are given in Theorem 8.

The description rates needed for this method are as follows,
and are represented by Point D in Fig. 13

(9)

where is the binary entropy function. The above calculation
is assisted by observing that and .

B. Cascade Multiterminal

We now give bounds on the coordination capacity region for
the cascade-multiterminal network of Fig. 14. In this setting,
node and node each have an action specified by nature ac-
cording to the joint distribution . Node sends a mes-
sage at rate to node . Based on its own action and the
incoming message about , node sends a message to node

at rate . Finally, node produces an action based on the
message from node .

The coordination codes consist of an en-
coding function

a recoding function

and a decoding function
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The actions and are chosen by nature i.i.d. according
to , and the actions are functions of and
given by implementing the coordination code as

Node is playing two roles in this network. It acts partially as
a relay to send on the message from node to node , while at
the same time sending a message about its own actions to node

. This situation applies to a variety of source coding scenarios.
Nodes and might both be sensors in a sensor network, or
node can be thought of as a relay for connecting node to
node , with side information .

This network is similar to multiterminal source coding con-
sidered by Berger and Tung [23] in that two sources of informa-
tion are encoded in a distributed fashion. In fact, the expansion
to accommodate cooperative encoders [18] can be thought of as
a generalization of our network. However, previous work along
these lines is missing one key aspect of efficiency, which is to
partially relay the encoded information without changing it.

Vasudevan, Tian, and Diggavi [24] looked at a similar cascade
communication system with a relay. In their setting, the relay’s
information is a degraded version of the decoder’s side infor-
mation, and the decoder is only interested in recovering . Be-
cause the relay’s observations contain no additional information
for the decoder, the relay does not face the dilemma of mixing in
some of the side information into its outgoing message. In our
cascade multiterminal network, the decoder does not have side
information. Thus, the relay is faced with coalescing the two
pieces of information and into a single message. Other re-
search involving similar network settings can be found in [25],
where Gu and Effros consider a more general network but with
the restriction that the action is a function of the action ,
and [26], where Bakshi et al. identify the optimal rate region
for lossless encoding of independent sources in a longer cas-
cade (line) network.

The set of rate-coordination tuples is an inner bound
on the coordination capacity region, given by

such that

The set of rate-coordination tuples is an outer bound on
the coordination capacity region, given by

such that

Also, define and to be the
sets of rate pairs in and corresponding to the de-
sired distribution .

TABLE II
KNOWN CAPACITY REGION (CASES WHERE� � � )

Theorem 8 (Coordination Capacity Region Bounds): The co-
ordination capacity region for empirical coordination in the
cascade multiterminal network of Fig. 14 is bounded by

Discussion: The regions and are convex. A
time-sharing random variable can be lumped into the auxiliary
random variable in the definition of to show convexity.

The inner bound is achieved by dividing the message
from node into two parts. One part, represented by , is sent
to all nodes, relayed by node to node . The other part, repre-
sented by , is sent only to node . Then node recompresses

along with .
The outer bound is a combination of the Wyner-Ziv

[27] bound for source coding with side information at the de-
coder, obtained by letting node and node fully cooperate,
and the two-node bound of Theorem 3, obtained by letting node

and node fully cooperate.
For some distributions, the bounds in Theorem 8 are tight and

the rate-coordination region . This is
true for all distributions where form a Morkov chain
or form a Markov chain. In the first case, where

form a Morkov chain, choosing in
the definition of reduces the region to all rate pairs such
that , which meets the outer bound . In the
second case, where form a Morkov chain, choosing

and reduces the region to all rate pairs such that
and , which meets the outer

bound. Therefore, we find as special cases that the bounds in
Theorem 8 are tight if is a function of , if is a function
of , or if the reconstruction is a function of and [28].

Table II shows choices of and from that yield
in each of the above cases. In case 3, is

selected to minimize along the lines of [29].

Example 5 (Task Assignment): Consider again a task assign-
ment setting similar to Example 3, where three tasks are to be
assigned without duplication to the three nodes , , and ,
and the assignments for nodes and are chosen uniformly
at random by nature among all pairs of tasks where .
A distribution capturing this coordination behavior is the uni-
form distribution over the six permutations of task assignments.
Let be the distributions obtained by sampling and
uniformly at random from the set {1, 2, 3} without replacement,
and let be the degenerate distribution where is the
remaining unassigned task in {1, 2, 3}. Fig. 15 illustrates a valid
outcome of the task assignments.

Task assignment in the cascade multiterminal network
amounts to computing a function , and the bounds in
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Fig. 15. Task assignment in the cascade multiterminal network: Three tasks,
numbered 1, 2, and 3, are distributed among three nodes �, �, and � in the
cascade multiterminal network setting. The task assignments for � and � are
given randomly by nature but different from each other. What rates � and �
are necessary to allow � to choose a different task from both � and �?.

Theorem 8 are tight in such cases. The rate-coordination region
is given by

This is achieved by letting and in the definition
of . To show that this region meets the outer bound ,
make the observation that in relation
to the bound on , since forms a Markov
chain.

V. STRONG COORDINATION

So far we have examined coordination where the goal is to
generate through communication based on so that the
joint type is equal to the desired distribution

. This goal relates to the joint behavior at the
nodes in the network averaged over time. There is no imposed
requirement that be random, and the order of the sequence
of the pairs does not matter.

How different does the problem become if we actually
want the actions at the various nodes in the network to be
random according to a desired joint distribution? In this
vein, we turn to a stronger notion of cooperation which we
call strong coordination. We require that the induced dis-
tribution over the entire coding block (induced
by the coordination code) be close to the target distribution

—so close that a statistician
could not tell the difference, based on , of whether

or .
Clearly this new strong coordination objective is more de-

manding than empirical coordination—after all, if one were to
generate random actions, i.i.d. in time, according to the appro-
priate joint distribution, then the empirical distribution would
also follow suit. But in some settings it is crucial for the coordi-
nated behavior to be random. For example, in situations where
an adversary is involved, it might be important to maintain a
mystery in the sequence of actions that are generated in the net-
work.

Strong coordination has applications in cooperative game
theory, discussed in [30]. Suppose a team shares the same
payoff in a repeated game setting. An opponent who tries to
anticipate and exploit patterns in the team’s combined actions
will be adequately combatted by strong coordination according
to a well-chosen joint distribution.

A. Problem Specifics

Most of the definitions relating to empirical coordination in
Section II-A carry over to strong coordination, including the no-
tions of coordination codes and induced distributions. However,
in the context of strong coordination, achievability has nothing
to do with the joint type. Here we define strong achievability to
mean that the distribution of the time-sequence of actions in the
network is close in total variation to the desired joint distribu-
tion, i.i.d. in time. We discuss the strong coordination capacity
region , like the region of Definition 6, but instead defined
by this notion of strong achievability.

Definition 9 (Strong Achievability): A desired distribution
is strongly achievable if there exists a sequence of

(nondeterministic) coordination codes such that the total varia-
tion between the induced distribution and the i.i.d.
desired distribution goes to zero. That is

A nondeterministic coordination code is a deterministic code
that utilizes an extra argument for each encoder and decoder
which is a random variable independent of all the other vari-
ables and actions. It seems quite reasonable to allow the en-
coders and decoders to use private randomness during the im-
plementation of the coordination code. This allowance would
have also been extended to the empirical coordination frame-
work of Sections II–IV; however, randomized encoding and de-
coding is not beneficial in that framework because the objective
has nothing to do with producing random actions (appropriately
distributed). This claim is similar to Theorem 2. Thus, nonde-
terministic coordination codes do not improve the empirical co-
ordination capacity over deterministic coordination codes.

Common randomness plays a crucial role in achieving strong
coordination. For instance, in a network with no communica-
tion, only independent actions can be generated at each node
without common randomness, but actions can be generated ac-
cording to any desired joint distribution if enough common ran-
domness is available, as is illustrated in Fig. 2 of Section I. In ad-
dition, for each desired joint distribution we can identify a spe-
cific bit-rate of common randomness that must be available to
the nodes in the network. This motivates us to deal with common
randomness more precisely.

Aside from the communication in the network, we allow
common randomness to be supplied to each node. However, to
quantify the amount of common randomness, we limit it to a
rate of bits per action. For an -block coordination code,
is uniformly distributed on the set . In this
way, common randomness is viewed as a resource alongside
communication.

B. Preliminary Observations

The strong coordination capacity region is not convex in
general. This becomes immediately apparent when we consider
a network with no communication and without any common
randomness. An arbitrary joint distribution is not strongly
achievable without communication or common randomness,
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but any extreme point in the probability simplex corresponds
to a degenerate distribution that is trivially achievable. Thus,
we see that convex combinations of achievable points in the
strong coordination capacity region are not necessarily strongly
achievable, and cannot be achieved through simple time-sharing
as was done for empirical coordination.

We use total variation as a measurement of fidelity for the
distribution of the actions in the network. This has a number
of implications. If two distributions have a small total variation
between them, then a hypothesis test cannot reliably tell them
apart. Additionally, the expected value of a bounded function
of these random variables cannot differ by much. Steinberg and
Verdú, for example, also use total variation as one of a handful
of fidelity criteria when considering the simulation of random
variables in [31]. On the other hand, Wyner used normalized rel-
ative entropy as his measurement of error for generating random
variables in [9]. Neither quantity, total variation or normalized
relative entropy, is dominated by the other in general (because
of the normalization). However, relative entropy would give in-
finite penalty if the support of the block-distribution of actions
is not contained in the support of the desired joint distribution.
We find cases where the rates required under the constraint of
normalized relative entropy going to zero are unpleasantly high.
For instance, lossless source coding would truly have to be loss-
less, with zero error.

Based on the success of random codebooks in information
theory and source coding in particular, it seems hopeful that
we might always be able to use common randomness to aug-
ment a coordination code intended for empirical coordination
to result in a randomized coordination code that achieves strong
coordination. Bennett et al. demonstrate this principle for the
two-node setting with their reverse Shannon theorem [15]. They
use common randomness to generate a random codebook. Then
the encoder synthesizes a memoryless channel and finds a se-
quence in the codebook with the same joint type as the syn-
thesized output. Will methods like this work in other network
coordination settings as well? The following conjecture makes
this statement precise and is consistent with both networks con-
sidered for strong coordination in this section of the paper.

Conjecture 1 (Strong Meets Empirical Coordination): With
enough common randomness, for instance if ,
the strong coordination capacity region is the same as the empir-
ical coordination capacity region for any specific network set-
ting. That is

With unlimited common randomness:

If Conjecture 1 is true, then results regarding empirical co-
ordination should influence strong coordination schemes, and
strong coordination capacity regions will reduce to empirical
coordination capacity regions under the appropriate limit.

C. No Communication

Here we characterize the strong coordination capacity region
for the no communication network of Fig. 16. A collection of

nodes , , and generate actions according to the joint distri-
bution using only common randomness (and private
randomization). The strong coordination capacity region char-
acterizes the set of joint distributions that can be achieved with
common randomness at a rate of bits per action.

Fig. 16. No communication. Three nodes generate actions � , � , and � ac-
cording to ���� �� �� without communication. The rate of common randomness
needed is characterized in Theorem 9.

Wyner considered a two-node setting in [9], where correlated
random variables are constructed based on common random-
ness. He found the amount of common randomness needed and
named the quantity “common information.” Here we extend
that result to three nodes, and the conclusion for any number
of nodes is immediately apparent.

The -block coordination codes consist of three nondeter-
ministic decoding functions

Each function can use private randomization to probabilistically
map the common random bits to action sequences. That is,
the functions , , and behave according to
conditional probability mass functions , , and

.
The rate region given in Theorem 9 can be generalized to any

number of nodes.

Theorem 9 (Strong Coordination Capacity Region): The
strong coordination capacity region for the no communication
network of Fig. 16 is given by

such that

Discussion: The proof of Theorem 9, sketched in
Section VII, follows nearly the same steps as Wyner’s common
information proof. This generalization can be interpreted as
a proposed measurement of common information between a
group of random variables. Namely, the amount of common
randomness needed to generate a collection of random vari-
ables at isolated nodes is the amount of common information
between them. However, it would also be interesting to consider
a richer problem by allowing each subset of nodes to have an
independent common random variable and investigating all of
the rates involved.

Example 6 (Task Assignment): Suppose there are tasks num-
bered , and three of them are to be assigned randomly
to the three nodes , , and without duplication. That is, the
desired distribution for the three actions in the net-
work is the distribution obtained by sampling , , and uni-
formly at random from the set without replacement.
The three nodes do not communicate but have access to common
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Fig. 17. Random task assignment with no communication: A task from a set
of tasks numbered �� � � � � � is to be assigned randomly but uniquely to each of
the nodes �, �, and � without any communication between them. The rate of
common randomness needed to accomplish this is roughly � � � ��	 � for
large �.

randomness at a rate of bits per action. We want to determine
the infimum of rates required to strongly achieve .
Fig. 17 illustrates a valid outcome of the task assignments.

Theorem 9 tells us which values of will result in
. We must optimize over distributions of an

auxiliary random variable . Two things come in to play to
make this optimization manageable: The variables , , and
are all conditionally independent given ; and the distribution

has sparsity. For any particular value of , the conditional
supports of , , and must be disjoint. Therefore

where , , and are integers that sum to for all
. Therefore, we maximize by letting the

three integers be as close to equal as possible. Furthermore, it
is straightforward to find a joint distribution that meets this in-
equality with equality.

If , the number of tasks, is divisible by three, then we see
that for values of

. No matter how large is, the required rate never ex-
ceeds .

D. Two Nodes

We can revisit the two-node network from Section III-A and
ask what communication rate is needed for strong coordination.
In this network the action at node is specified by nature ac-
cording to , and a message is sent from node to node
at rate . Common randomness is also available to both nodes
at rate . The common randomness is independent of the ac-
tion .

The rates and required for strong coordination in the
two-node network are characterized in [30] and were indepen-
dently discovered by Bennett et al. [32] in the context of syn-
thesizing a memoryless channel. Here we take particular note
of the two extremes: what is the strong coordination capacity
region when no common randomness is present, and how much

common randomness is enough to maximize the strong coordi-
nation capacity region?

The coordination codes consist of a nondetermin-
istic encoding function

and a nondeterministic decoding function

Both functions can use private randomization to probabilisti-
cally map the arguments onto the range of the function. That
is, the encoding function behaves according to a con-
ditional probability mass function , and the decoding
function behaves according to a conditional probability
mass function .

The actions are chosen by nature i.i.d. according to ,
and the actions are constructed by implementing the nonde-
terministic coordination code as

Let us define two quantities before stating the result. The first
is Wyner’s common information [9], which turns out
to be the communication rate requirement for strong coordina-
tion in the two-node network when no common randomness is
available

where the notation represents a Markov chain from
to to . The second quantity we call necessary condi-

tional entropy , which we will show to be the amount
of common randomness needed to maximize the strong coordi-
nation capacity region in the two-node network

Theorem 10 (Strong Coordination Capacity Region): With
no common randomness, , the strong coordination ca-
pacity region for the two-node network of Fig. 18 is given
by

On the other hand, if and only if the rate of common random-
ness is greater than the necessary conditional entropy,

, the strong coordination capacity region for the
two-node network of Fig. 18 is given by

Discussion: The proof of Theorem 10, found in Section VII,
is an application of Theorem 3.1 in [30]. This theorem is con-
sistent with Conjecture 1—with enough common randomness,
the strong coordination capacity region is the same as the
coordination capacity region found in Section III-A.
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Fig. 18. Two nodes. The action at node � is specified by nature according to
� ���, and a message is sent from node � to node � at rate �. Common ran-
domness is also available to both nodes at rate � . The common randomness is
independent of the action� . The strong coordination capacity region � depends
on the amount of common randomness available. With no common randomness,
� contains all rate-coordination pairs where the rate is greater than the common
information between � and � . With enough common randomness, � contains
all rate-coordination pairs where the rate is greater than the mutual information
between � and � .

Fig. 19. Task assignment in the two-node network: A task from a set of tasks
numbered �� � � � � � is to be assigned randomly but uniquely to each of the nodes
� and � in the two-node network. The task assignment for� is given by nature.
Common randomness at rate� is available to both nodes, and a message is sent
from node � to node � at rate �. When no common randomness is available,
the required communication rate is� � �� �	
� � bits (for even �). At the
other extreme, if the rate of common randomness is greater than �	
�� � ��,
then � � �	
� � suffices.

For many joint distributions, the necessary conditional
entropy will simply equal the conditional entropy

.

Example 7 (Task Assignment): Consider again a task assign-
ment setting similar to Example 6, where tasks are numbered

and are to be assigned randomly to the two nodes
and without duplication. The action is supplied by nature,
uniformly at random ( ), and the desired distribution
for the action is the uniform distribution over all tasks not
equal to . Fig. 19 illustrates a valid outcome of the task as-
signments.

To apply Theorem 10, we must evaluate the three quanti-
ties , , and . For the joint distribu-
tion , the necessary conditional entropy
is exactly the conditional entropy . The computation
of the common information follows the same steps as
the derivation found in Example 6. Let take the value of
rounded up to the nearest even number

Without common randomness, we find that the communica-
tion rate is necessary to strongly

achieve . The strong coordination capacity region
expands as the rate of common randomness increases.

Additional common randomness is no longer useful when
. With this amount of common randomness, only the

communication rate is necessary to strongly
achieve .

VI. RATE-DISTORTION THEORY

The challenge of describing random sources of information
with the fewest bits possible can be defined in a number of dif-
ferent ways. Traditionally, source coding in networks follows
the path of rate-distortion theory by establishing multiple dis-
tortion penalties for the multiple sources and reconstructions in
the network. Yet, fundamentally, the rate-distortion problem is
intimately connected to empirical coordination.

The basic result of rate-distortion theory for a single memory-
less source states that in order to achieve any desired distortion
level you must find an appropriate conditional distribution of the
reconstruction given the source and then use a communica-
tion rate larger than the mutual information . This lends
itself to the interpretation that optimal encoding for a rate-distor-
tion setting really comes down to coordinating a reconstruction
sequence with a source sequence according to a selected joint
distribution. Here we make that observation formal by showing
that in general, even in networks, the rate-distortion region is a
projection of the coordination capacity region.

The coordination capacity region is a set of rate-co-
ordination tuples. We can express rate-coordination tu-
ples as vectors. For example, in the cascade network of
Section III-C there are two rates and . The ac-
tions in this network are , , and , where is given
by nature. Order the space in a sequence

, where . The
rate-coordination tuples can be expressed
as vectors .

The rate-distortion region is the closure of the set of
rate-distortion tuples that are achievable in a network. We say
that a distortion is achievable if there exists a rate-distor-
tion code that gives an expected average distortion less than

, using as a distortion measurement. For example, in the
cascade network of Section III-C we might have two distor-
tion functions: The function measures the distortion
in the reconstruction at node Y; the function eval-
uates distortion jointly between the reconstructions at nodes
and . The rate-distortion region would consist of tuples

, which indicate that using rates and in
the network, a source distributed according to can be en-
coded to achieve no more than expected average distortion
as measured by and distortion as measured by .

The relationship between the rate-distortion region and
the coordination capacity region is that of a linear projec-
tion. Suppose we have multiple finite-valued distortion func-
tions . We construct a distortion matrix using the
same enumeration of the space

as was used to vectorize the tuples in

...
...

...
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The distortion matrix is embedded in a block diagonal matrix
where the upper-left block is the identity matrix with the

same dimension as the number of rates in the network

Theorem 11 (Rate-Distortion Region): The rate-distortion re-
gion for a memoryless source with distribution in any
rate-limited network is a linear projection of the coordination
capacity region by the matrix

We treat the elements of and as vectors, as discussed,
and the matrix multiplication by is the standard set multipli-
cation.

Discussion: The proof of Theorem 11 can be found in
Section VII. Since the coordination capacity region is a
convex set, the rate-distortion region is also a convex set.

Clearly we can use a coordination code to achieve the corre-
sponding distortion in a rate-distortion setting. But the theorem
makes a stronger statement. It says that there is not a more ef-
ficient way of satisfying distortion limits in any network setting
with memoryless sources than by using a code that produces
the same joint type for almost every observation of the sources.
It is conceivable that a rate-distortion code for a network set-
ting would produce a variety of different joint types, each satis-
fying the distortion limit, but varying depending on the partic-
ular source sequence observed. However, given such a rate-dis-
tortion code, repeated uses will produce a longer coordination
code that consistently achieves coordination according to the ex-
pected joint type. The expected joint type of a good rate-distor-
tion code can be shown to satisfy the distortion constraints.

Geometrically, each distortion constraint defines a hy-
perplane that divides the coordination-rate region into two
sets—one that satisfies the distortion constraint and one that
does not. Therefore, minimizing the distortion for fixed rates in
the network amounts to finding optimal extreme points in the
coordination-rate region in the directions orthogonal to these
hyperplanes. Fig. 20 shows the coordination-rate region for

in the two-node network of Section III-A, with a
uniform binary source and binary . The figure also shows
the region satisfying a Hamming distortion constraint .

VII. PROOFS

A. Empirical Coordination – Achievability (Sections III, IV)

For a distribution , define the typical set with re-
spect to to be sequences whose types are -close to
in total variation. That is

(10)

This definition is almost the same as the definition of the
strongly typical set found in (10.106) of Cover and
Thomas [33], and it shares the same important properties.
The difference is that here we give a total variation constraint

Fig. 20. Coordination capacity and rate-distortion: The coordination-rate re-
gion for a uniform binary source� and binary action � , where � is described
at rate � � ��� ���� to node � in the two-node network. The shaded region
shows distributions with Hamming distortion less than �, where � is chosen
to satisfy ���	 
 ��� ����.

( distance) on the type of the sequence rather than an el-
ement-wise constraint ( distance).2 We deal with
since it relates more closely to the definition of achievability
in Definition 5. However, the sets are almost the same, as the
following sandwich suggests:

A jointly typical set with respect to a joint distribution
inherits the same definition as (10), where total variation of the
type is measured with respect to the joint distribution. Thus,
achieving empirical coordination with respect to a joint distribu-
tion is a matter of constructing actions that are -jointly typical
(i.e., in the jointly typical set ) with high probability for ar-
bitrary .

1) Strong Markov Lemma: If form a Markov
chain, and the pair of sequences and are jointly typical as
well as the pair of sequences and , it is not true in gen-
eral that the three sequences , , and are jointly typ-
ical as a triple. For instance, consider any triple
that is jointly typical with respect to a non-Markov joint distri-
bution having marginal distributions and . How-
ever, the Markov Lemma [23] states that if is randomly dis-
tributed according to , then with high probability
it will be jointly typical with both and . This lemma is
used to establish joint typicality in source coding settings where
side information is not known to the encoder. Yet, for a net-
work and encoding scheme that is more intricate, the standard
Markov Lemma lacks the necessary strength. Here we intro-
duce a generalization that will help us analyze the layers of
“piggy-back”-style codes [34] used in our achievability proofs.3

Theorem 12 (Strong Markov Lemma): Given a joint distribu-
tion on the finite alphabet that yields a
Markov chain (i.e., ),

2Additionally, our definition of the typical set handles the zero probability
events more liberally, but this does not present any serious complications.

3Through conversation we discovered that similar effort is being made by
Young-Han Kim and Abbas El Gamal and may soon be found in the Stanford
EE478 Lecture Notes.
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let and be arbitrary sequences that are -jointly typical.
Suppose that is randomly chosen from the set of se-
quences that are -jointly typical with and additionally that
the distribution of is permutation-invariant with respect to

, which is to say, any two sequences and of the same
joint type with have the same probability. That is

(11)

Then

where exponentially fast as goes to infinity.
Notice that permutation invariance is a condition satisfied by

most random codebook based proof techniques—for instance,
encoding schemes based on i.i.d. codebooks tend to be permu-
tation invariant. To recover the familiar Markov Lemma, let
have a distribution based on according to ,
where is an -typical sequence. Due to the A.E.P., and

will be -jointly typical with high probability. Furthermore,
Theorem 12 can be invoked because the distribution is permu-
tation invariant.

The key to proving Theorem 12 is found in Lemma 13, which
uses permutation invariance and counting arguments to show
that most realizations look empirically Markov.

Lemma 13 (Markov Tendency): Let and
be arbitrary sequences. Suppose that the random sequence

has a distribution that is permutation-invariant with
respect to , as in (11). Then with high probability which
only depends on the sizes of the alphabets , , and , the
joint type will be -close to the Markov joint type

. That is, for any

(12)

with a probability of at least where and
only depend on the alphabet sizes and .

Proof of Theorem 12: The proof of Theorem 12 relies
mainly on Lemma 13 and repeated use of the triangle inequality.
From Lemma 13 we know that with probability approaching
one as tends to infinity, inequality (12) is satisfied, namely

In this event, we now show that

By the definition of total variation one can easily show that

Similarly

and finally

Thus, the triangle inequality gives

Proof of Lemma 13: We start by defining two constants
that simplify this discussion. The first constant, , is the key to
obtaining the uniform bound that Lemma 13 provides

Here is the simplex with dimension corresponding to
the product of the alphabet sizes. Notice that is defined as
a minimization of a continuous function over a compact set;
therefore, by analysis we know that the minimum is achieved
in the set. Since is positive for any distribution that
does not form a Markov chain , we find that is
positive for . The constants and are functions of and
the alphabet sizes , , and .

We categorize sequences into sets with the same joint type.
The type class is defined as

We also define a conditional type class to be the set
of sequences such that the pair are in the type class

. Namely

We will show that the statement made in (12) is true condi-
tionally for each conditional type class and, there-
fore, must be true overall.

Suppose falls in the conditional type class .
By assumption (11), all in this type class are equally likely.
Assessing probabilities simply becomes a matter of counting.
From the method of types [33] we know that

We also can bound the number of sequences in
that do not satisfy (12). These sequences must fall

in a conditional type class where

For each such type class, the size can be bounded by
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Fig. 21. Two nodes with side information: This network represents a generic
source coding setting encountered in networks and will illustrate standard en-
coding techniques. The sequences � , � , and � are jointly typical with re-
spect to � ��� �� ��. Only � and � are observed by the encoder at node 1.
A message is sent to specify � to node 2 at rate �. A randomized coding
scheme can produce � to be jointly typical with �� � � � � � with respect to
a Markov chain���	�
 ��� with high probability, regardless of the partic-
ular sequences � , � , and � , as long as the rate is greater than the conditional
mutual information ��	�� �
���.

Furthermore, there are only polynomially many types, bounded
by . Therefore, the probability that does not satisfy
(12) for any conditional type is bounded by

2) Generic Achievability Proof: The coding techniques for
achieving the empirical coordination regions in Sections III and
IV are familiar from rate distortion theory. For the proofs, we
construct random codebooks for communication and show that
the resulting encoding schemes perform well on average, pro-
ducing jointly-typical actions with high probability. This proves
that there must be at least one deterministic scheme that per-
forms well. Here we prove one generally useful example to
verify that the rate-distortion techniques actually do work for
achieving empirical coordination. The technique here is very
similar to the source coding technique of “piggy-back” codes
introduced by Wyner [34].

Consider the two-node source coding setting of Fig. 21 with
arbitrary sequences , , and that are -jointly typical ac-
cording to a joint distribution . The sequences and

are available to the encoder at node 1, while and are
available to the decoder at node 2. We can think of as the
source to be encoded and and as side information known
to either both nodes or the decoder only, respectively. Commu-
nication from node 1 to node 2 at rate is used to produce a
sequence . Original results related to this setting in the con-
text of rate-distortion theory can be found in the work of Wyner
and Ziv [27]. Here we analyze a randomized coding scheme
that attempts to produce a sequence at the decoder such that

are -jointly typical with respect to a joint
distribution of the form . We give a scheme

that uses a communication rate of and is
successful with probability approaching one as tends to in-
finity for all jointly typical sequences , , and .

The coordination codes consist of a randomized en-
coding function

and a randomized decoding function

These functions are random simply because the common ran-
domness is involved for generating random codebooks.

The sequences , and are arbitrary jointly typical se-
quences according to , and the sequence is a ran-
domized function of , and given by implementing the
coordination code as

Lemma 14 (Generic Coordination With Side Information):
For the two-node network with side information of Fig. 21 and
any discrete joint distribution of the form ,
there exists a function which goes to zero as goes to zero
such that, for any and rate ,
there exists a sequence of randomized coordination codes at rate

for which

as goes to infinity, uniformly for all .
Proof: Consider a joint distribution and

define to be the excess rate, . The
conditions of Lemma 14 require that for some that
goes to zero as goes to zero. We will identify a valid function

at the conclusion of the following analysis.
We first over-cover the typical set of using a code-

book of size , where . We then
randomly categorize the codebook sequences into bins,
yielding roughly sequences in each bin, where

Codebook: Using , generate a codebook of se-
quences independently according to the marginal distri-
bution , namely . Randomly and independently
assign each one a bin number in the set .

Encoder: The encoding function can be ex-
plained as follows. Search the codebook and identify an
index such that . If multiple exist,
select the first such . If none exist, select . Send the bin
number .

Decoder: The decoding function can be ex-
plained as follows. Consider the codebook and identify an
index such that and . If
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multiple exist, select the first such . If none exist, select .
Produce the sequence .

Error Analysis: We conservatively declare errors for any of
the following, , , or .

Error 1: The encoder does not find a -jointly typical
sequence in the codebook. By the method of types one can
show, as in Lemma 10.6.2 of [33], that each sequence in is

-jointly typical with with probability greater than
for large enough, where goes to

zero as goes to zero.
Each sequence in the codebook is generated indepen-

dently, so the probability that none of them are jointly typical
is bounded by

Error 2: The sequence identified by the encoder is not
-jointly typical with . Assuming did not

occur, because of the Markovity implied
by and the symmetry of our codebook
construction, we can invoke Theorem 12 to verify that the
conditional probability is arbitrarily small for large
enough .

Error 3: The decoder finds more than one eligible action
sequence. Assume that and did not occur. If the de-
coder considers the same index as the encoder selected, then
certainly will be be eligible, which is to say it will be

-jointly typical with , and the bin index will match
the received message. For all other sequences in the codebook

, an appeal to the property of iterated expectation indicates
that the probability of eligibility is slightly less than the a priori
probability that a randomly generated sequence and bin number
will yield eligibility (had you not known that it was not the se-
quence selected by the encoder), which is upper bounded by

. Therefore, by the method of types
and the union bound

Thus, we can select to make
all error terms go to zero and satisfy the lemma.

With the result of Lemma 14 in mind, we can confidently
talk about using communication to establish coordination of se-
quences across links in a network. Throughout the following
explanations we will no longer pay particular attention to the
in the -jointly typical set. Instead, we will simply make refer-
ence to the generic jointly typical set, with the assumption that

is sufficiently small and is sufficiently large.
3) Two Nodes – Theorem 3: It is clear from Lemma 14 that

an action sequence jointly typical with can be specified

with high probability using any rate . With high
probability will be a typical sequence. Apply Lemma 14
with .

4) Isolated Node – Theorem 4: No proof is necessary, as this
is a special case of the cascade network with .

5) Cascade – Theorem 5: The cascade network of Fig. 8
has a sequence given by nature. The actions will be
typical with high probability. Consider the desired coordina-
tion . A sequence can be specified with rate

to be jointly typical with . This communication is
sent to node and forwarded on to node . Additionally, now
that every node knows , a sequence can be specified with
rate and sent to node . The rates used are

and

Degraded Source – Theorem 6: The degraded source network
of Fig. 10 has a sequence given by nature, known to node ,
and another sequence , which is a letter-by-letter function of

, known to node . Incidentally, is also known to node
because it is a function of the available information. The actions

and will be jointly typical with high probability.
Consider the desired coordination and choose a dis-

tribution for the auxiliary random variable to help
achieve it. The encoder first specifies a sequence that is
jointly typical with and . This requires a rate

, but with binning we only need a rate
of to specify from node to node .
Binning is not used when is forwarded to node . Finally,
after everyone knows , the action sequence jointly typ-
ical with , , and is specified to node at a rate of

. Thus, all rates are achiev-
able which satisfy

6) Broadcast – Theorem 7: The broadcast network of Fig. 11
has a sequence given by nature, known to node . The ac-
tion sequence will be typical with high probability.

Consider the desired coordination and choose a dis-
tribution for the auxiliary random variable to help
achieve it. We will focus on achieving one corner point of the
pentagonal rate region. The encoder first specifies a sequence

that is jointly typical with using a rate .
This sequence is sent to both node and node . After ev-
eryone knows , the encoder specifies an action sequence

that is jointly typical with and using rate
. Finally, the encoder at node , knowing both

and , can specify an action sequence that is jointly typ-
ical with using a rate . This
results in rates
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7) Cascade Multiterminal—Theorem 8: The cascade multi-
terminal network of Fig. 14 has a sequence given by nature,
known to node , and another sequence given by nature,
known to node . The actions and will be jointly typ-
ical with high probability.

Consider the desired coordination and choose
a distribution for the auxiliary random variables and

according to the inner bound in Theorem 8. That is,
. We specify a se-

quence to be jointly typical with . By the Strong Markov
Lemma (Theorem 12), in conjunction with the symmetry of our
random coding scheme and the Markovity of the distribution

, the sequence will be jointly typical with the
pair with high probability. Using binning, we only
need a rate of to specify from node to
node (as in Lemma 14). However, we cannot use binning for
the message to node , so we send the index of the codework
itself at a rate of . Now that everyone knows
the sequence , it is treated as side information.

A second auxiliary sequence is specified from node to
node to be jointly typical with . This scenario
coincides exactly with Lemma 14, and a sufficient rate is

. Finally, an action sequence is specified from
node to node to be jointly typical with , where

is side information known to the encoder and decoder. We
achieve this using a rate . Again, because
of the symmetry of our encoding scheme, the Strong Markov
Lemma (Theorem 12) tells us that will
be jointly typical, and, therefore, will be jointly
typical.

The rates used by this scheme are

B. Empirical Coordination—Converse (Section III, Section IV)

In proving outer bounds for the coordination capacity of var-
ious networks, a common time mixing trick is to make use of a
random time variable and then consider the value of a random
sequence at the random time using notation . We first
make this statement precise and discuss the implications of such
a construction.

Considering a coordination code for a block length . We as-
sign to have a uniform distribution over the set ,
independent of the action sequences in the network. The vari-
able is simply a function of the sequence and the vari-
able ; namely, the variable takes on the value of the th
element in the sequence . Even though all sequences of ac-
tions and auxiliary variables in the network are independent of

, the variable need not be independent of .
Here we list a couple of key properties of time mixing.
1) Property 1: If all elements of a sequence are identi-

cally distributed, then is independent of . Furthermore,
has the same distribution as . Verifying this property

is easy when one considers the conditional distribution of
given .

2) Property 2: For a collection of random sequences ,
, and , the expected joint type is equal to

the joint distribution of the time-mixed variables

3) Two Nodes—Theorem 3: Assume that a rate-coordination
pair is in the interior of the coordination capacity
region for the two-node network of Fig. 5 with source dis-
tribution . For a sequence of coordination codes
that achieves , consider the induced distribution on
the action sequences.

Recall that is the message from node to node

Equality comes from Property 1 of time mixing.
We would like to be able to say that the joint distribution of

and is arbitrarily close to for some . That
way we could conclude, by continuity of the entropy function,
that .

The definition of achievability (Definition 5) states that

in probability

Because total variation is bounded, this implies that

Furthermore, by the Jensen Inequality

Now Property 2 of time mixing allows us to conclude the argu-
ment for Theorem 3.
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4) Isolated Node—Theorem 4: No proof is necessary, as this
is a special case of the cascade network with .

5) Cascade—Theorem 5: For the cascade network of Fig. 8,
apply the bound from the two-node network twice—once to
show that the rate is needed even if node
and node are allowed to fully cooperate, and once to show that
the rate is needed even if node and node
are allowed to fully cooperate.

6) Degraded Source—Theorem 6: Assume that a rate-co-
ordination quadruple is in the interior
of the coordination capacity region for the degraded
source network of Fig. 10 with source distribution
and the degraded relationship . For a sequence
of coordination codes that achieves

, consider the induced distribution on
the action sequences.

Recall that the message from node to node at rate
is labeled , the message from node to node at rate is
labeled , and the message from node to node at rate is
labeled . We identify the auxiliary random variable as the
collection of random variables

Equality is justified because the message is a function of
the message and the sequence . Equality comes from
Property 1 of time mixing

Equality is justified because the action sequence is a func-
tion of the messages and . Equality comes from Property
1 of time mixing

Equality comes from Property 1 of time mixing.
As seen in the proof for the two-node network, the joint

distribution of , , and is arbitrarily close to
. Therefore, since is a closed

set, is in the coordination capacity
region stated in Theorem 6.

It remains to bound the cardinality of . We can use the stan-
dard method rooted in the support lemma of [35]. The vari-
able should have elements to preserve the joint
distribution , which in turn preserves , ,
and , and three more elements to preserve ,

, and .
7) Broadcast—Theorem 7: For the broadcast network of

Fig. 11, apply the bound from the two-node network three
times—once to show that the rate is needed and
once to show that the rate is needed, and finally a
third time to show that the sum-rate is
needed even if node and node are allowed to fully cooperate.

8) Cascade Multiterminal—Theorem 8: Assume that a
rate-coordination triple is in the interior of
the coordination capacity region for the cascade multiter-
minal network of Fig. 14 with source distribution . For
a sequence of coordination codes that achieves

, consider the induced distribution on the
action sequences.

Recall that the message from node to node at rate
is labeled , and the message from node to node at rate

is labeled . We identify the auxiliary random variable as
the collection of random variables .
This is the same choice of auxiliary variable used by Wyner and
Ziv [27]. Notice that satisfies the Markov chain properties

and
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Equality comes from Property 1 of time mixing

Equality comes from Property 1 of time mixing.
As seen in the proof for the two-node network, the

joint distribution of , , and is arbitrarily close
to . Therefore, since is a closed set,

is in the coordination capacity region stated
in Theorem 8.

It remains to bound the cardinality of . We can again
use the standard method of [35]. Notice that

captures all of the Markovity constraints
of the outer bound. Therefore, convex mixtures of distributions
of this form are valid for achieving points in the outer bound.
The variable should have elements to pre-
serve the joint distribution , which in turn preserves

and , and one more element to preserve
.

C. Strong Coordination (Section V)

1) No Communication—Theorem 9: The network of Fig. 16
with no communication generalizes Wyner’s common informa-
tion work [9] to three nodes. Here we provide a sketch of the
proof.

The following phenomenon was noticed both by Wyner [9]
and by Han and Verdú [14]. Consider a memoryless channel

. A channel input with distribution induces an output
with distribution . If the inputs are i.i.d.
then the outputs are i.i.d. as well. Now suppose that instead a
channel input sequence is chosen uniformly at random from
a set of deterministic sequences. If then
the set can be chosen so that the output distribution is arbi-
trarily close in total variation to the i.i.d. distribution
for large enough .

Fig. 22 illustrates how to achieve the strong coordination ca-
pacity region of Theorem 9. Let each decoder simulate a
memoryless channel from to , , or , depending on the
particular node. The common randomness is used to index
a sequence that is used as the inputs to the channels.
Notice that the action sequences , , and produced
via these three separate channels are distributed the same as
if they were generated as outputs of a single channel because

according to the definition
of in the theorem. Since for points in the
interior of , this scheme will achieve strong coordination.

Fig. 22. Achievability for no-communication network: The strong coordina-
tion capacity region � of Theorem 9 is achieved in a network with no com-
munication by using the common randomness to specify a sequence � ���
that is then passed through a memoryless channel at each node using private
randomness.

For the converse, identify the auxiliary variable as and
notice that , , and are conditionally independent (for all
) given

Since , , and have a joint distribution close in total
variation to the i.i.d. distribution , it can be
shown that they can essentially be treated as i.i.d. sequences in
the mutual information bounds (see [30]). If they were i.i.d. we
would have

where the minimization is over all eligible auxiliary that sep-
arate , , and into conditional independence.

It remains to bound the cardinality of . We can again
use the standard method of [35]. The variable should have

elements to preserve the joint distribution
, which in turn preserves , and one more

element to preserve .
2) Two Nodes—Theorem 10: The strong coordination ca-

pacity region for the two-node network of Fig. 18 is the main
result of [30]

(13)
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where refers to the rate of common randomness, and refers
to the communication rate.

In the case of no common randomness ( ), the
stronger inequality in (13) on the rate become the second,

. Because of the Markov constraint on ,
the minimum value of the right-hand side of this inequality is
Wyner’s common information .

Additionally, Theorem 10 states that if is greater than
the necessary conditional entropy then rates

are sufficient for achieving strong coordination. This
is a straightforward application of the definition of .
We can verify this with the following choice of

Notice that this choice of separates and into a Markov
chain by definition. Also, the mutual information is
less than or equal to , since is a function of , thus
satisfying the first rate inequality in (13). The second inequality
is satisfied because of the chain rule

Furthermore, we can show that this is the least amount of
common randomness needed to fully expand the strong coordi-
nation capacity region. In other words, the minimum such
that is in the strong rate-coordination region

is .
To prove this, first consider the implications of .

This means that in order to satisfy the first rate inequality in (13),
we must have . However, because of the
Markovity, . Therefore,

, which implies a second Markov condition in
addition to .

We are concerned with minimizing the required rate of
common randomness . Since , the second rate
inequality in (13) becomes . The conditional
entropy is fixed, so we want to maximize the condi-
tional entropy .

With the distribution in mind, we can clump values
of together for which the channel from to is identical.
Define a function with the property that

(14)

Letting will be the choice of that simultane-
ously maximizes and satisfies the Markov condi-
tions and . We can compare to any
other choice that satisfies the conditions and show that the
resulting conditional entropy is smaller.

Another way to state the two Markov conditions is that for
all values of and such that , the conditional
distributions and are equal because

. Notice that the value of , char-
acterized in (14), only depends on the channel . However,

with probability one the value of can be determined from
based on the conditional distribution . Therefore

D. Rate-Distortion Theory (Sections Section VI)

We establish the relationship from Theorem 11 between the
coordination capacity region and the rate-distortion region in
two parts. First we show that contains and then the
other way around. To keep clutter to a minimum and without
loss of generality, we only discuss a single distortion measure

, rate , and a pair of sequences of actions and .
1) Coordination Implies Distortion ( ): The dis-

tortion incurred with respect to a distortion function on a set
of sequences of actions is a function of the joint type of the se-
quences. That is

(15)

When a rate-coordination tuple is in the interior
of the coordination capacity region , we are assured the ex-
istence of a coordination code for any for which

Therefore, with probability greater that

Recalling (15) yields

As expected, a sequence of coordination codes that
achieves empirical coordination for the joint distribution
also achieves the point in the rate-distortion region with the
same rate and with distortion value .

2) Distortion Implies Coordination ( ): Sup-
pose that a rate-distortion codes achieves distortion

. Substituting from (15)

However

by linearity.
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Fig. 23. Extended cascade network: This is an extension of the cascade network of Section III-C. Action � is given randomly by nature according to � ���,
and a cascade of communication is used to produce actions � through � . The coordination capacity region contains all rate-coordination tuples that satisfy
� � ����� � � � � � � � for all �. In particular, the sum rate needed to assign a permutation of 	 tasks to the 	 nodes grows linearly with the number of nodes.

We can achieve the rate-coordination pair by
augmenting the rate-distortion code. If we repeat the use of
the rate-distortion code over blocks of length each, then
we induce a joint distribution on that consists of
i.i.d. sub-blocks denoted
as .

By the weak law of large number

in probability

Point-wise convergence in probability implies that as grows

in probability

Thus, for any point in the rate-distortion region we
have identified an associated point in the coor-
dination-capacity region. Indeed, the rate-distortion region is a
linear projection of the coordination-capacity region.

VIII. REMARKS

Rather than inquire about the possibility of moving data in a
network, we have asked for the set of all achievable joint distri-
bution on actions at the nodes. For some three-node networks
we have fully characterized the answer to this question, while
for others we have established bounds.

Some of the results discussed in this work extend nicely to
larger networks. Consider for example an extended cascade net-
work shown in Fig. 23, where is given randomly by nature
and through are actions based on a cascade of commu-
nication. Just as in the cascade network of Section III-C, we can
achieve rates for empirical coordina-
tion by sending messages to the last nodes in the chain first and
conditioning later messages on earlier ones. These rates meet
the cut-set bound. We now can make an interesting observation
about assigning unique tasks to nodes in such a network. Sup-
pose tasks are to be completed by the nodes in this cascade
network, one at each node. Node is assigned a task randomly,
and the communication in the network is used to assign a permu-
tation of all the tasks to the nodes in the network. The necessary
rates in the network are . The sum of all the rates in
the network, for large , is then approximately nats,
where is the number of tasks and nodes in the network.

Now consider the same task assignment scenario for an
extended broadcast network shown in Fig. 24. Here again
is given randomly by nature, but through are actions
based on individual messages sent to each of the nodes. Again,

Fig. 24. Extended broadcast network: This is an extension of the broadcast
network of Section IV-A. Action � is given randomly by nature according to
� ���, and each peripheral node produces an action � based on an individual
message at rate � . Bounds on the coordination capacity region show that the
sum rate needed to assign a permutation of 	 tasks to the 	 nodes grows loga-
rithmically with the number of nodes.

we want to assign a permutation of all the tasks to all of the
nodes. We can use ideas from the broadcast network results

of Section IV-A. For example, let us assign default tasks to the
nodes so that unless told otherwise.
Now the communication is simply used to tell each node when
it must choose task rather than the default task, which will
happen about one time out of . The rates needed for this
scheme are , where is the binary entropy
function. For large , the sum of all the rates in the network
is approximately nats. The cut-set bound
gives us a lower bound on the sum rate of nats.
Therefore, we can conclude that the optimal sum rate scales
with the logarithm of the number of nodes in the network.

Even without explicitly knowing the coordination capacity
region for the broadcast network, we are able to use bounds
to establish the scaling laws for the total rate needed to assign
tasks uniquely, and we can compare the efficiency of the broad-
cast network (logarithmic in the network size) with that of the
cascade network (linear in the network size) for this kind of co-
ordination.

We would also like to understand the coordination capacity
region for a noisy network. For example, the communication
capacity region for the broadcast channel of Fig. 25
has undergone serious investigation. The standard question is,
how many bits of independent information can be communi-
cated from to and from to . We know the answer if
the broadcast channel is degraded; that is, if can be viewed as
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Fig. 25. Broadcast channel. When a noisy channel is used to coordinate joint
actions ���� � � �, what is the resulting coordination capacity region? The
broadcast network of Section IV-A is a noiseless special case.

a noisy version of . We also know the answer if the channel
can be separated into two orthogonal channels or is determin-
istic. But what if instead we are trying to coordinate actions
via the broadcast channel, similar to the broadcast network of
Section IV-A? Now we care about the dependence between
and . The broadcast channel will impose a natural dependence
between the channel outputs and that we abolish if we
try to send independent information to the two nodes. After all,
the communication capacity region for the broadcast channel
depends only on the marginals and . Here we
are wasting a valuable resource—the natural conditional depen-
dence between and given .

Again, we are enlarging the focus from communication of
independent information to the creation of coordinated actions.
This larger question may force a simpler solution and illuminate
the problem of independent information (the standard channel
capacity formulation) as a special case. Presumably, informa-
tion is being communicated for a reason—so future cooperative
behavior can be achieved.

IX. FINAL REMARKS

At first it seems that the nodes in a network can cooperate
arbitrarily without communication. Prior arrangement achieves
that. Also common randomness achieves it.

But the problem changes dramatically when some of the
nodes take actions specified by nature. Now some communica-
tion to the remaining nodes becomes necessary to establish the
desired dependence.

We have established the rate-dependence tradeoff for cascade
networks and isolated node networks found in Section III. The
broadcast network of Fig. 11 remains elusive, perhaps for the
same reason that the broadcast channel is difficult.
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